Abstract

Abstract. Remote sensing has evolved into the most efficient approach to assess post-disaster structural damage, in extensively affected areas through the use of spaceborne data. For smaller, and in particular, complex urban disaster scenes, multi-perspective aerial imagery obtained with unmanned aerial vehicles and derived dense color 3-D models are increasingly being used. These type of data allow the direct and automated recognition of damage-related features, supporting an effective post-disaster structural damage assessment. However, the rapid collection and sharing of multi-perspective aerial imagery is still limited due to tight or lacking regulations and legal frameworks. A potential alternative is aerial video footage, which is typically acquired and shared by civil protection institutions or news media and which tends to be the first type of airborne data available. Nevertheless, inherent artifacts and the lack of suitable processing means have long limited its potential use in structural damage assessment and other post-disaster activities. In this research the usability of modern aerial video data was evaluated based on a comparative quality and application analysis of video data and multi-perspective imagery (photos), and their derivative 3-D point clouds created using current photogrammetric techniques. Additionally, the effects of external factors, such as topography and the presence of smoke and moving objects, were determined by analyzing two different earthquake-affected sites: Tainan (Taiwan) and Pescara del Tronto (Italy). Results demonstrated similar usabilities for video and photos. This is shown by the short 2 cm of difference between the accuracies of video- and photo-based 3-D point clouds. Despite the low video resolution, the usability of these data was compensated for by a small ground sampling distance. Instead of video characteristics, low quality and application resulted from non-data-related factors, such as changes in the scene, lack of texture, or moving objects. We conclude that not only are current video data more rapidly available than photos, but they also have a comparable ability to assist in image-based structural damage assessment and other post-disaster activities.

Highlights

  • The effectiveness of post-disaster activities during the response and recovery phases relies on accurate and early damage estimations

  • The usability of video data for SDA was investigated based on the analysis of their 2-D and 3-D quality and application in post-disaster activities

  • The 2-D quality analysis indicated possible sources of error expressed by low image quality index (IQI) for the video datasets, attributed to low resolution and external factors

Read more

Summary

Introduction

The effectiveness of post-disaster activities during the response and recovery phases relies on accurate and early damage estimations. Post-disaster structural damage assessment (SDA) is typically based on ground surveying methods, the most accurate approach for the assessment and classification of structural building damage. Rely on rapidly obtaining building damage information, which is not possible through such groundbased methods. The potential for SDA of oblique-perspective data, such as Pictometry and aerial stereoscopic imagery, has long been realized; means to process those data have traditionally been limited to manual/visual inspection or to singleperspective texture-based damage mapping

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.