Abstract

Many Deaf and Hard-of-Hearing (DHH) individuals across the world benefit from various captioning services for accessing information existing in the form of speech. Today, the Automatic Speech Recognition (ASR) technology has the potential to replace the existing human-provided services for captioning due to their lowered cost of operation and ever-increasing accuracy. However, as with most automatic systems, ASR technology is still not fully perfect --- which leads to issues in terms of its trust and acceptance when focusing on building a human-free service of communication for these users. Thus, there is a need for evaluating the usability these systems with the users before deploying them into the real-world. Yet, most researchers lack access to sufficient DHH users for extrinsic, empirical studies of these automatic captioning systems. This articles presents our work on the development of automatic caption quality evaluation metric which we design and validate through studies and real-world observations with DHH users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.