Abstract

BACKGROUND: The use of robotic technology for neurorehabilitative applications has become increasingly important for adults and children with different motor impairments.OBJECTIVE: The aim of this study was to evaluate the technical feasibility and usability of a new interactive leg-press training robot that was developed to train leg muscle strength and control, suitable for children with neuromuscular impairments.METHODS: An interactive robotic training system was designed and constructed with various control strategies, actuators and force/position sensors to enable the performance of different training modes (passive, active resistance, and exergames). Five paediatric patients, aged between 7 and 16 years (one girl, age 13.0 3.7 years, [mean SD]), with different neuromuscular impairments were recruited to participate in this study. Patients evaluated the device based on a user satisfaction questionnaire and Visual Analog Scale (VAS) scores, and therapists evaluated the device with the modified System Usability Scale (SUS).RESULTS: One patient could not perform the training session because of his small knee range of motion. Visual Analog Scale scores were given by the 4 patients who performed the training sessions. All the patients adjudged the training with the interactive device as satisfactory. The average SUS score given by the therapists was 61.2 18.4.CONCLUSION: This study proposed an interactive lower limb training device for children with different neuromuscular impairments. The device is deemed feasible for paediatric rehabilitation applications, both in terms of technical feasibility and usability acceptance. Both patients and therapists provided positive feedback regarding the training with the device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call