Abstract

BackgroundGlioblastoma multiforme (GBM) is the most common and fatal primary tumor in the central nervous system (CNS). The effect of chemotherapy of GBM is limited due to the existence of blood-brain barrier (BBB). The aim of this study is to develop self-assembled nanoparticles (NPs) of ursolic acid (UA) for GBM treatment. MethodsUA NPs were synthesized by solvent volatilization method. Western blot analysis fluorescent staining and flow cytometry were launched to explore the anti-glioblastoma mechanism of UA NPs. The antitumor effects of UA NPs were further confirmed in vivo using intracranial xenograft models. ResultsUA were successfully prepared. In vitro, UA NPs could significantly increase the protein levels of cleaved-caspase 3 and LC3-II to strongly eliminate glioblastoma cells through autophagy and apoptosis. In the intracranial xenograft models, UA NPs could further effectively enter the BBB, and greatly improve the survival time of the mice. ConclusionsWe successfully synthesized UA NPs which could effectively enter the BBB and show strong anti-tumor effect which may have great potential in the treatment of human glioblastoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call