Abstract
The goal of this study was to examine the effect of ursolic acid, a pentacyclic triterpenoid compound, on growth of the endometrial cancer cell line SNG-II. We found that ursolic acid strongly inhibited the growth of SNG-II cells in a dose- and time-dependent manner. Morpholgical changes characteristic of apoptosis were observed in treated cells, such as the presence of apoptotic bodies and fragmentation of DNA into oligonucleosomal-sized fragments. We also investigated the active forms of caspase-3, -8 and -9 in ursolic acid-treated SNG-II cells. At 25 and 50 microM strength, ursolic acid induced marked increases in caspase-3 activity to approximately 5-fold that of control cells. Levels of cleaved caspase-3 increased in a time- and dose-dependent manner. Activation of caspases also led to the cleavage of target proteins, such as PARP. Ursolic acid treatment also resulted in a cleavage of poly (ADP-ribose) polymerase in a dose-dependent manner. Testing whether caspase-3 activation and DNA polymerase activity were inhibited by addition of Ac-DEDV-HCO during ursolic acid treatment showed that 50 microM Ac-DEDV-HCO inhibited caspase-3 activity in treated cells. Although DNA fragmentation was observed after ursolic acid treatment, DNA fragmentation did not occur in SNG II cells treated with both Ac-DEDV-HCO and ursolic acid. Because some researchers have suggested that mitochondrial pathways are involved in ursolic acid-induced apoptosis secondary to induction of mitochondrial cytochrome c release, we studied mitochondrial events in ursolic acid-induced apoptosis in these cell lines. After ursolic acid treatment, the anti-apoptotic Bcl-2 protein decreased and Bax expression was enhanced. Our results indicated that ursolic acid induced apoptotic processes in the endometrial cancer SNG-II cell line through mechanisms involving mitochondrial pathways and Bcl-2 family proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.