Abstract

Hit, Lead & Candidate Discovery Protein tyrosine phosphatase 1B (PTP-1B) has attracted interest as a novel target for the treatment of type 2 diabetes, this because its role in the insulin-signaling pathway as a negative regulator. Thus, the aim of current work was to obtain seven ursolic acid derivatives as potential antidiabetic agents with PTP-1B inhibition as main mechanism of action. Furthermore, derivatives 1-7 were submitted in vitro to enzymatic PTP-1B inhibition being 3, 5, and 7 the most active compounds (IC50 =5.6, 4.7, and 4.6μM, respectively). In addition, results were corroborated with in silico docking studies with PTP-1B orthosteric site A and extended binding site B, showed that 3 had polar and Van der Waals interactions in both sites with Lys120, Tyr46, Ser216, Ala217, Ile219, Asp181, Phe182, Gln262, Val49, Met258, and Gly259, showing a docking score value of -7.48Kcal/mol, being more specific for site A. Moreover, compound 7 showed polar interaction with Gln262 and Van der Waals interactions with Ala217, Phe182, Ile219, Arg45, Tyr46, Arg47, Asp48, and Val49 with a predictive docking score of -6.43kcal/mol, suggesting that the potential binding site could be localized in the site B adjacent to the catalytic site A. Finally, derivatives 2 and 7 (50mg/kg) were selected to establish their in vivo antidiabetic effect using a noninsulin-dependent diabetes mice model, showing significant blood glucose lowering compared with control group (p<.05).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call