Abstract

Ursolic acid (UA) has been reported to possess several biological benefits, such as anti-cancer, anti-inflammation, antibacterial, and neuroprotective functions. This study detects the function and molecular mechanism of UA in H9c2 cells under hypoxia and reoxygenation (H/R) conditions.Under H/R stimulation, the effects of UA on H9c2 cells were examined using ELISA and western blot assays. The Comparative Toxicogenomics Database was employed to analyze the target molecule of UA. Small interfering RNA was used to knock down CXCL2 expression, further exploring the function of CXCL2 in H/R-induced H9c2 cells. The genes related to the nuclear factor-kappa B (NF-κB) pathway were assessed using western blot analysis.Significant effects of UA on H/R-induced H9c2 cell damage were observed, accompanied by reduced inflammation and oxidative stress injury. Additionally, the increased level of CXCL2 in H/R-induced H9c2 cells was reduced after UA stimulation. Moreover, CXCL2 knockdown strengthened the beneficial effect of UA on H/R-induced H9c2 cells. HY-18739, an activator of the NF-κB pathway, can increase CXCL2 expression. Moreover, the increased levels of p-P65 NF-κB and p-IκBα in H/R-induced H9c2 cells were remarkably attenuated by UA treatment.In summary, the results indicated that UA may alleviate the damage of H9c2 cells by targeting the CXCL2/NF-κB pathway under H/R conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.