Abstract

Oxidative stress has been associated with diabetic complications like nephropathies. Recent studies indicate that ursodeoxycholic acid (UDCA) may be beneficial preventing diabetes-induced oxidative stress and secondary complications. Thus, we study if the UDCA-treatment decreases the expression of sodium-glucose cotransporter (SGLT2) and the oxidative stress in the kidney of diabetic rats. MethodsThe diabetes model was established by intraperitoneal injection of streptozotocin (50mg/kg). SGLT2 expression was evaluated by western blot and RT-PCR. Oxidative stress was assessed by catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase activities (SOD) and immunohistochemical analysis of 3-nitrotyrosine (3-NT). ResultsStreptozotocin-induced diabetes caused hyperglycemia and lower body weight. The SGLT2 expression and mRNA levels increased in cortex of kidney from diabetic rats. The CAT activity decreased in cortex and medulla from diabetic rats, otherwise the GPx activity increased. Furthermore the 3-NT staining of kidney from diabetic rats increased compared to control rats. The UDCA treatment was able to decrease hyperglycemia and prevents the SGLT2 over-expression, restores the CAT and GPX activities and decreases 3-NT staining. ConclusionThe UDCA treatment prevents the over-expression of SGLT2 and oxidative stress in kidney of diabetic rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call