Abstract

Urotropine is a cheap and promising ligand for the synthesis of metal-organic frameworks containing uncoordinated nitrogen atoms. The reactions between urotropine, dicarboxylic acids, and zinc(II) or cobalt(II) salts were studied. The optimization of the reaction conditions allows the synthesis of three urotropine-containing metal-organic frameworks, [Zn(ur)(abdc)]• •DMF•H2O (1, ur is urotropine, abdc2− is 4,4´-diazobiphenyldicarboxylate, DMF is N,N-dimethylformamide), (CH3ur)[NaCo(dmf)2(bptc)] (2, CH3ur+ is N-methylhexa methyl enetetrammonium, bptc4− is 2,2´,4,4´-biphenyltetracarboxylate), and [Co4(dmf)(ur)2(ndc)4]•5DMF (3, ndc2− is 2,6-naphthalenedicarboxylate). These compounds were structurally characterized and their thermal and adsorption properties were studied. In the three compounds, urotropine performs diff erent functions, acting as a monodentate ligand (compound 1), a bidentate ligand (compound 3), or a methylammonium counterion (compound 2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.