Abstract

Previous work from our laboratory has demonstrated that frog urotensin-II (UII), at a high concentration, inhibits glucose-induced insulin release in the rat pancreas. We have investigated the effect of rat UII and two structural analogs on insulin secretion and searched for the presence of UII-immunoreactivity in rat pancreatic extracts. The study was performed in the perfused rat pancreas. UII as well as its analogs were synthesized by solid phase methodology. Pancreatic extracts were analyzed for UII by reversed-phase HPLC combined with a sensitive UII RIA. Infusion of synthetic rat UII inhibited glucose-induced insulin release in a dose-dependent manner (IC(50): 0.12 nmol/l). UII (1 nmol/l) also inhibited the insulin responses induced by carbachol, glucagon-like peptide-1, and a calcium channel agonist (BAY K 8644). The inhibitory effect of UII was mimicked by the potent G protein-coupled receptor (GPR14) agonist [3-iodo-Tyr(6)]UII(4-11). In contrast, [Ala(8)]UII(4-11), a UII analog devoid of contractile activity on rat aortic rings, did not affect glucose-induced insulin secretion. Analysis of rat pancreatic extracts revealed the presence of an immunoreactive peptide exhibiting the same retention time as synthetic rat UII. Our results demonstrate that UII is a potent insulinostatic peptide. The observation that UII is actually present in the pancreas suggests that this peptide may play a physiological role in the control of insulin secretion. Concerning the two UII analogs tested, only [3-iodo-Tyr(6)]UII(4-11), reportedly possessing GPR14-mediated contractile activity, mimics the insulinostatic effect of UII. This finding would support the view that UII acts on the pancreatic beta cell through the GPR14 receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.