Abstract

Increases in urokinase plasminogen activator (uPA) have been reported in tissues undergoing remodelling, but its effects on the vessel intima formation are not known. We investigated its effects on carotid artery intima, media and lumen size, as well as smooth muscle cell (SMC) proliferation and migration in vivo. Carotid arteries of rats were distended with an inflated balloon catheter and uPA, or uPA-neutralizing antibodies were applied perivascularly in pluronic gel; control rats received vehicle. Carotid artery structure, cell migration and proliferation were assessed after 4 days by quantitative morphometry and immunohistochemistry. Four days after increasing vessel uPA, the intima/media ratio was double compared to that in control rats (both P < 0.05). The size of the lumen reduced by 75%, compared to the vehicle-treated vessels (P < 0.05). The elevation in uPA also increased SMC numbers in the intima and media, compared to the vehicle-treated vessels (both P < 0.05). Antibody neutralizing endogenous uPA attenuated the growth responses in the distended arteries, reduced neointimal SMC numbers by approximately 50% and prevented much of the reduction in lumen size. Thus, local increases in uPA in distended, injured arteries augment SMC migratory and proliferative responses, leading to increases in the thickness of the carotid artery intima and media and a reduction in lumen size; effects at least partially attributable to its proteolytic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.