Abstract

This report documents the first observation of a urine-powered microbial fuel cell operating with a genetically engineered bacterial strain. Under identical conditions, a pilT mutant of the Gram-negative bacterium Pseudomonas aeruginosa showed a 2.7-fold increase in peak power density compared to the wild-type strain, PAO1. The reduced twitching motility and hyperpiliation of the pilT mutant enhances the formation of electrogenic biofilms. For both strains, the observed high internal resistance near open-circuit voltage is attributed to sluggish redox reactions on the anode surface and not to slow bacterial metabolism. This work lays the groundwork for optimization of multiple bacterial traits leading to increased electroactive properties and opens new opportunities for urine-based mini-devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call