Abstract

BackgroundAmbient particulate matter (PM) is closely associated with morbidity and mortality from cardiovascular disease. Urine metabolites can be used as a non-invasive means to explore biological mechanisms for such associations, yet has not been performed in relation to different sizes of PM. In this randomized crossover study, we used metabolomics approach to explore the urine biomarkers linked with cardiovascular effects after PM exposure in a subway environment. Methods and resultsThirty-nine subjects were exposed to PM for 4 h in subway system, with either a respirator intervention phase (RIP) with facemask and no intervention phase (NIP) in random order with a 2-week washout period. Electrocardiogram (ECG) parameters and ambulatory blood pressure (BP) were monitored during the whole riding period and urine samples were collected for metabolomics analysis. After exposure to PM for 4 h in subway system, 4 urine metabolites in male and 7 urine metabolites in female were screened out by UPLC/Q-TOF MS/MS-based metabolomics approach. Cardiovascular parameters (HRV and HR) predominantly decreased in response to all size-fractions of PM and were more sensitive in response to different size-fractioned PM in males than females. Besides LF/HF, most of the HRV indices decrease induced by the increase of all size-fractioned PM while PM1.0 was found as the most influential one on indicators of cardiovascular effects and urine metabolites both genders. Prolyl-arginine and 8-OHdG were found to have opposing role regards to HRV and HR in male. ConclusionOur data indicated that short-term exposure to PM in a subway environment may increase the risk of cardiovascular disease as well as affect urine metabolites in a size dependent manner (besides PM0.5), and male were more prone to trigger the cardiovascular events than female after exposure to PM; whereas wearing facemask could effectively reduce the adverse effects caused by PM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.