Abstract

Preeclampsia is characterized by hypertension, proteinuria, suppression of plasma renin-angiotensin-aldosterone, and impaired urine sodium excretion. Aberrantly filtered plasmin in urine may activate proteolytically the γ-subunit of the epithelial sodium channel (ENaC) and promote Na+ reabsorption and urine K+ loss. Plasma and urine was sampled from patients with preeclampsia, healthy pregnant controls and non-pregnant women, and from patients with nephrostomy catheters. Aldosterone concentration, urine plasminogen, and protein were determined. Exosomes were isolated by ultracentrifugation. Immunoblotting was used to detect exosome markers; γ-ENaC (two different epitopes within the inhibitory peptide tract), α-ENaC, and renal outer medullary K-channel (ROMK) and compared with human kidney cortex homogenate. Urine total plasmin(ogen) was significantly increased in preeclampsia, plasma and urine aldosterone was higher in pregnancy compared to non-pregnancy, and the urine Na/K ratio was lower in preeclampsia compared to healthy pregnancy. Exosome markers ALIX and AQP-2 were stably associated with exosomes across groups. Exosomal α-ENaC-subunit migrated at 75kDa and dominantly at 50kDa and was significantly elevated in pregnancy. In human kidney cortex tissue and two of four pelvis catheter urine, ~90-100kDa full-length γ-ENaC was detected while no full-length γ-ENaC but 75, 60, and 37kDa variants dominated in voided urine exosomes. There was no difference in γ-ENaC protein abundances between healthy pregnancy and preeclampsia. ROMK was detected inconsistently in urine exosomes. Pregnancy and preeclampsia were associated with increased abundance of furin-cleaved α-ENaC subunit while γ-subunit appeared predominantly in cleaved form independently of conditions and with a significant contribution from post-renal cleavage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call