Abstract
High Na intake and chronically elevated cortisol levels are independently associated with the development of chronic diseases. In adults, high Na intake is associated with high levels of urinary cortisol. We aimed to determine the association between urinary Na and K and urinary cortisol in a cross-sectional sample of Australian schoolchildren and their mothers. Participants were a sample of Australian children (n 120) and their mothers (n 100) recruited through primary schools. We assessed Na, K, free cortisol and cortisol metabolites in one 24 h urine collection. Associations between 24 h urinary electrolytes and 24 h urinary cortisol were assessed using multilevel mixed-effects linear regression models. In children, urinary Na was positively associated with urinary free cortisol (β=0·31, 95 % CI 0·19, 0·44) and urinary cortisol metabolites (β=0·006, 95 % CI 0·002, 0·010). Positive associations were also observed between urinary K and urinary free cortisol (β=0·65, 95 % CI 0·23, 1·07) and urinary cortisol metabolites (β=0·02, 95 % CI 0·03, 0·031). In mothers, urinary Na was positively associated with urinary free cortisol (β=0·23, 95 % CI 0·01, 0·50) and urinary cortisol metabolites (β=0·008, 95 % CI 0·0007, 0·016). Our findings show that daily Na and K intake were positively associated with cortisol production in children and their mothers. Investigation of the mechanisms involved and the potential impact of Na reduction on cortisol levels in these populations is warranted.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.