Abstract

Urinary tract infections caused by multidrug-resistant Enterobacteriaceae are a growing burden worldwide. Recent studies of urinary pharmacokinetics described high piperacillin/tazobactam (TZP) concentrations in urine, but it is unknown whether this results in treatment efficacy. This study investigated the pharmacodynamics of TZP in a static in vitro model for Enterobacteriaceae to determine the concentration-effect relationship and ultimately the required free (unbound) time above the minimum inhibitory concentration (fT>MIC) required for bacterial killing. The static simulation model investigated TZP fT>MIC between 0% and 100%. Resistant Escherichia coli and Klebsiella pneumoniae isolates with piperacillin/tazobactam MICs of 4096/512, 1024/128 and 128/16 mg/L were investigated; two of the three organisms were carbapenemase-producers. Clinical efficacy was determined as a 3-log reduction over the dosing interval by comparing interval growth with controls. TZP was observed to exhibit time dependence for all organisms. The fT>MIC was determined to be 37.5%, 37.5% and 50% for MICs of 4096/512, 1024/128 and 128/16 mg/L, respectively. Linear regression identified the overall target to be 49.85 ± 16.9% fT>MIC. In conclusion, bactericidal activity against TZP-resistant Enterobacteriaceae occurred at 49.85 ± 16.9% fT>MIC. This suggests that highly resistant urinary organisms, including carbapenemase-producers, with MICs up to 4096/512 mg/L could be treated with TZP. Further investigations are required to elucidate urinary breakpoints and to explore the impact of different resistance mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.