Abstract
The G protein-coupled pheromone receptor neurons (V1R and V2R) of the vomeronasal organ (VNO) are continually replaced throughout the lifetime of the mouse. Moreover, active signalling of V2Rs via the transient receptor potential 2(TRPC2) channel is necessary for regeneration of receptors, as the TRPC2 null mutant mouse showed a 75% reduction of V2Rs by the age of two months. Here we describe V2R mediated signalling in a neuronal line established from vomeronasal stem cells taken from postnatal female mice. Cells were immunoreactive for Galpha(o) and V2R, whereas V1R and Galpha(i) immunoreactivity could not be detected. Biological ligands (dilute urine and its protein fractions) were found to increase proliferation and survival of these neurons. Dilute mouse urine but not artificial urine also induced ERK, Akt and CREB signalling in a dose dependent way. The volatile fraction of male mouse urine alone was without effect while the fraction containing peptides (> 5 kDa) also stimulated ERK and Akt phosphorylation. The ERK, Akt and CREB phosphorylation response was sensitive to pertussis toxin, confirming the involvement of V2R linked Galpha(o). Dilute mouse urine or its high molecular weight protein fraction increased survival and proliferation of these neurons. Hence, urinary pheromones, which signal important social information via mature neurons, also promote survival and proliferation of their regenerating precursors. These data show that regenerating V2Rs respond to urine and the urinary peptides by activation of the Ras-ERK and PI3-Akt pathways, which appear to be important for vomeronasal neural survival and proliferation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.