Abstract

BackgroundPhthalates are ubiquitous in the environment. Despite short half-lives, chronic exposure can lead to endocrine disruption. The safety of phthalate substitute DINCH is unclear. ObjectiveTo evaluate associations between urinary concentrations of phthalate/DINCH metabolites and body mass index (BMI) z-score among children and adolescents. MethodWe used Human Biomonitoring for Europe Aligned Studies data from 2876 children (12 studies, 6–12 years, 2014–2021) and 2499 adolescents (10 studies, 12–18 years, 2014–2021) with up to 14 phthalate/DINCH urinary metabolites. We used multilevel linear regression to assess associations between phthalate/DINCH concentrations and BMI z-scores, testing effect modification by sex. In a subset, Bayesian kernel machine regression (BKMR) and quantile-based g-computation assessed important predictors and mixture effects. ResultsIn children, we found few associations in single pollutant models and no interactions by sex (p-interaction > 0.1). BKMR detected no relevant exposures (posterior inclusion probabilities, PIPs < 0.25), nor joint mixture effect. In adolescent single pollutant analysis, mono-ethyl phthalate (MEP) concentrations were associated with higher BMI z-score in males (β = 0.08, 95 % CI: 0.001,0.15, per interquartile range increase in ln-transformed concentrations, p-interaction = 0.06). Conversely, mono-isobutyl phthalate (MiBP) was associated with a lower BMI z-score in both sexes (β = -0.13, 95 % CI: −0.19, −0.07, p-interaction = 0.74), as was sum of di(2-ethylhexyl) phthalate (∑DEHP) metabolites in females only (β = -0.08, 95 % CI: −0.14, −0.02, p-interaction = 0.01). In BKMR, higher BMI z-scores were predicted by MEP (PIP=0.90) and MBzP (PIP=0.84) in males. Lower BMI z-scores were predicted by MiBP (PIP=0.999), OH-MIDP (PIP=0.88) and OH-MINCH (PIP=0.72) in both sexes, less robustly by DEHP (PIP=0.61) in females. In quantile g-computation, the overall mixture effect was null for males, and trended negative for females (β = -0.11, 95 % CI: −0.25, 0.03, per joint exposure quantile). ConclusionIn this large Europe-wide study, we found age/sex-specific differences between phthalate metabolites and BMI z-score, stronger in adolescents. Longitudinal studies with repeated phthalate measurements are needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.