Abstract

Previous studies implied that elevated exposure to amphenicol antibiotics may induce increased oxidative stress. However, the effects of amphenicol antibiotics exposure on oxidative stress damage in human have not been well studied. This study examined the associations between amphenicol antibiotics exposure and oxidative damage biomarkers in school children. Three major amphenicols including chloramphenicol (CAP), thiamphenicol (TAP), florfenicol (FF) and two biomarkers of 8-hydroxydeoxyguanosine (8-OHdG) for oxidative DNA damage and 8-oxo-7,8- dihydroguanosine (8-OHG) for oxidative RNA damage were measured in 414 morning urine samples collected from 70 school children in Shanghai, China. School children were exposed to CAP, TAP, and FF with median concentrations of 1.37, 0.36, and 0.06 μg/g Cre, respectively. Linear mixed models revealed that an interquartile range (IQR) increase of urinary TAP was positively associated with 7.75%(95% CI: 4.40%, 11.1%) increase of 8-OHdG and 7.48%(95% CI: 2.49%, 15.6%) increase of 8-OHG, respectively; in addition, CAP was associated with elevated 8-OHdG. Although FF was not found to be significantly associated with either 8-OHdG or 8-OHG, it is warranted to further investigate FF and its metabolites levels in relation to oxidative stress in future study. Our findings provide new evidence for the effects of exposure to TAP and CAP on nucleic acid oxidative damage in Children.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call