Abstract

The positive costimulatory proteins OX40 and OX40L and negative regulatory proteins programmed death (PD)-1, PD ligand 1, and PD ligand 2 have emerged as significant regulators of acute rejection in experimental transplantation models. We obtained 21 urine specimens from 21 renal allograft recipients with graft dysfunction and biopsy-confirmed acute rejection and 25 specimens from 25 recipients with stable graft function and normal biopsy results (stable). Urinary cell levels of mRNAs were measured using real-time quantitative polymerase chain reaction assays, and the levels were correlated with allograft status and outcomes. Levels of OX40 mRNA (P<0.0001, Mann-Whitney test), OX40L mRNA (P=0.0004), and PD-1 mRNA (P=0.004), but not the mRNA levels of PD ligand 1 (P=0.08) or PD ligand 2 (P=0.20), were significantly higher in the urinary cells from the acute rejection group than the stable group. Receiver operating characteristic curve analysis demonstrated that acute rejection is predicted with a sensitivity of 95% and a specificity of 92% (area under the curve=0.98, 95% confidence interval 0.96-1.0, P<0.0001) using a combination of levels of mRNA for OX40, OX40L, PD-1, and levels of mRNA for the previously identified biomarker Foxp3. Within the acute rejection group, levels of mRNA for OX40 (P=0.0002), OX40L (P=0.0004), and Foxp3 (P=0.04) predicted acute rejection reversal, whereas only OX40 mRNA levels (P=0.04) predicted graft loss after acute rejection. A linear combination of urinary cell levels of mRNA for OX40, OX40L, PD-1, and Foxp3 was a strong predictor of acute rejection in human renal allograft biopsies. This prediction model should be validated using an independent cohort of renal allograft recipients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.