Abstract

Urinary beta 2-microglobulin and N-acetyl-beta-D-glucosaminidase have been recommended as sensitive indicators of renal dysfunction induced by cadmium. However, an increase in urinary calcium in early renal damage induced by cadmium has been reported both in humans and in animal experiments. To investigate the feasibility of using urinary calcium as a biomarker of renal dysfunction induced by cadmium, two areas were selected in this study, namely, a polluted area with a 3.71 mg/kg cadmium concentration in rice and a control area with a 0.07 mg/kg cadmium concentration. The total number of participants was 499, made up of 252 in the control group and 247 from the cadmium-polluted area. Urinary cadmium, urinary calcium, and zinc concentrations were measured by atomic absorption spectrometry, and beta 2-microglobulin and N-acetyl-beta-D-glucosaminidase in urine were analyzed. The levels of urinary cadmium and urinary calcium in persons from the exposed area were significantly higher (P < 0.05) than those in the control area for both men and women, but there was no significant difference regarding urinary zinc between the two areas. A significant dose-response relationship between the prevalence of hypercalciuria and the excretion of urinary cadmium was observed, and a significantly increased prevalence of calciuria was found when excretion of urinary cadmium exceeded 2 micrograms/g creatinine. The findings were similar to those for excess urinary secretion of beta 2-microglobulin and N-acetyl-beta-D-glucosaminidase. Because cadmium can affect Ca2+ uptake by tubular cells, with decreased renal Ca2+ reabsorption, calciuria may reflect tubular cell damage caused by cadmium. It was concluded that cadmium exposure can result in increased excretion of urinary calcium in a general population and that there is a significant dose-response relationship. Urinary calcium can therefore be used as a biomarker of renal dysfunction induced by cadmium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.