Abstract
Extracellular matrix (ECM) is responsible for tendon strength and elasticity. Healed tendon ECM lacks structural integrity, leading to reinjury. Porcine urinary bladder matrix (UBM) provides a scaffold and source of bioactive proteins to improve tissue healing, but has received limited attention for treating tendon injuries. The objective of this study was to evaluate the ability of UBM to induce matrix organization and tenogenesis using a novel in vitro model. We hypothesized that addition of UBM to tendon ECM hydrogels would improve matrix organization and cell differentiation. Hydrogels seeded with bone marrow cells (n = 6 adult horses) were cast using rat tail tendon ECM ± UBM, fixed under static tension and harvested at 7 and 21 days for construct contraction, cell viability, histology, biochemistry, and gene expression. By day 7, UBM constructs contracted significantly from baseline, whereas control constructs did not. Both control and UBM constructs contracted significantly by day 21. In both groups, cells remained viable over time and changed from round and randomly oriented to elongated along lines of tension with visible compaction of the ECM. There were no differences over time or between treatments for nuclear aspect ratio, DNA, or glycosaminoglycan content. Decorin, MMP-13, and Scleraxis expression increased significantly over time, but not in response to UBM treatment. Mohawk expression was constant over time. COMP expression decreased over time in both groups. Using a novel ECM hydrogel model, substantial matrix organization and cell differentiation occurred; however, addition of UBM failed to induce greater matrix organization than tendon ECM alone. This article is protected by copyright. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of orthopaedic research : official publication of the Orthopaedic Research Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.