Abstract
Phosphate flame retardants (PFRs) are abundant and found at the highest concentrations relative to other flame retardant chemicals in house dust; however, little is known about the biological levels of PFRs and their relationship with house dust concentrations. These relationships provide insight into major exposure pathways and potential health risks. We analyzed urine samples from 16 California residents in 2011 for 6 chlorinated and nonchlorinated dialkyl or diaryl phosphates (DAPs), the expected major metabolites of the most prominent PFRs, and qualitatively screened for 18 other metabolites predicted from in vitro studies. We detected all 6 DAPs within the range of previously reported levels, although very few comparisons are available. We found weakly positive nonsignificant correlations between urine and dust concentrations and maxima urine corresponding to maxima dust for the pairs bis(1,3-dichloro-2-propyl) phosphate (BDCIPP)-tris(1,3-dichloro-isopropyl) phosphate (TDCIPP) and bis(2-chloroethyl) phosphate (BCEP)-tris(2-chloroethyl) phosphate (TCEP). Metabolite levels of PFRs were correlated for many PFR combinations, suggesting they commonly co-occur. As far as we know, this is the first study to measure these 6 DAP metabolites simultaneously and to detect other PFR metabolites in US urine samples. We recommend biomonitoring studies include these 6 DAPs as well as several additional compounds detected through qualitative screening and previous ADME studies. PFRs represent a class of poorly studied commercial chemicals with widespread exposure and raise concerns for health effects including carcinogenicity and neurotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.