Abstract

Children with congenital anomalies of kidney and urinary tract (CAKUT) are at high risk of progressive deterioration of kidney function and further developing stage5 chronic kidney disease (CKD5), even after a successful surgery. This prospective study was designed to determine whether urinary biomarkers can predict progressive deterioration of kidney function in children with CAKUT. The study included 50 consecutive children, aged < 14 years, who were diagnosed with congenital uropathies (PUV, VUR, and PUJO) and 20 age-matched controls. Examination of four urinary biomarkers, i.e., trefoil family factors (TFF) 1 and 3, neutrophil gelatinase-associated lipocalin (NGAL) and microalbuminuria (MALB) was done at the beginning of follow-up. Kidney function was assessed, at the beginning and after 12-months of follow-up, by technetium-99m diethylene triamine pentaacetic acid (DTPA) and technetium-99m dimercaptosuccinic acid (DMSA) scans. Progressive deterioration in the kidney function was defined as a fall in the GFR from ≥ 60 to < 60 ml/min/1.73 m2 on comparing the baseline and latest DTPA scans; and/or new-onset cortical scar/scars or increase in the size of previous scar/scars on serial DMSA scans. Group 1 and group 2 included children without and with progressive functional deterioration respectively. The median (IQR) age of children with CAKUT and controls was 3 (1.5-5) and 2.3 (1.2-3.6) years, respectively, and showed no significant difference (p = 0.29). Median concentrations of TFF1, TFF3, NGAL, and microalbumin in patients were 44.5, 176.5, 281.2, and 15.5 mcg/gCr, respectively, and were significantly elevated as compared to controls (p < 0.05). Children belonging to group 2 had significantly higher concentration of biomarkers as compared to those in group 1. TFF3 was found have the highest AUC (0.9198) on ROC curve for predicting progressive functional deterioration. Urinary TFFs, NGAL, and microalbumin significantly correlate with progressive deterioration of kidney function in children harboring CAKUT. TFF3, with the strongest prediction of functional deterioration, is an emerging peptide showing sufficient potential to be included in the biomarker panel. Graphical abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call