Abstract
Inflammation, intrarenal renin-angiotensin system (RAS) activation, oxidative stress, and carbonyl stress have been postulated to play a fundamental role in controlling blood pressure. However, little is known about the association among renal RAS activation, carbonyl stress, and blood pressure elevation. We evaluated the relationship between blood pressure elevation and either renal RAS activity or carbonyl stress in the general population (N = 355) in Japan. To minimize the effect of antihypertensive drug therapy, we divided participants into 3 groups (normotensive, hypertensive-with-non-medication, and hypertensive-with-medication). Intrarenal RAS activity and carbonyl stress were indicated by the urinary angiotensinogen (AGT) and carbonyl compound excretion levels, respectively. The urinary AGT and carbonyl compound excretion levels were significantly associated with blood pressure. Using a stepwise multiple regression analysis, we found that the urinary AGT excretion levels were strongly associated with blood pressure elevation, compared with inflammation, oxidative stress, and carbonyl stress markers, in all groups. Urinary carbonyl compound excretion was significantly associated with blood pressure in only the hypertensive-without-medication group. Furthermore, blood pressure was significantly increased in these participants, and both the urinary AGT and carbonyl compound levels were high. The urinary AGT excretion levels were strongly associated with elevated blood pressure in normotensive people, and inappropriate renal RAS activity and carbonyl stress independently contributed to the development of hypertension. These findings suggest that RAS activation, particularly renal RAS activation exert a fundamental role in the pathogenesis of hypertension in the general population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.