Abstract

For either clinical or research purposes, the timing of the nocturnal onset in production of the urinary melatonin metabolite 6-sulfatoxymelatonin (UaMT6s-onset), has been proposed as a reliable and robust marker of circadian phase. However, given that most circadian rhythms show cycle-to-cycle variability, the statistical reliability of phase estimates obtained from a single study using UaMT6s-onset remains to be determined. Following 2 weeks of sleep diary and wrist actigraphy, 15 young, healthy good sleepers participated in four UaMT6s sampling sessions spaced 1 day apart. During the sampling sessions subjects remained indoors under low light conditions and hourly urine samples were collected from 19:00 to 02:00 h. Samples were subsequently assayed for UaMT6s using standard radioimmunographic techniques. UaMT6s-onset was determined by the time at which melatonin production exceeded the average of three proceeding trials by 100%. Sleep onset times were derived from sleep diary and actigraphic measures taken before the melatonin collection nights. We found that there was no significant variation between nights in group mean UaMT6s-onset times, and intraindividual variability was small. In addition, UaMT6s-onset times were highly and significantly correlated between nights (grand mean r = 0.804). Our results suggest that within 95% confidence interval limits, individual UaMT6s-onset estimates obtained from a single night UaMT6s-onset study can be used to predict subsequent UaMT6s-onset times within +/- 97 min. A close temporal relationship was also found between the timing of UaMT6s-onset and sleep onset. Overall, our results suggest that under entrained conditions single-session UaMT6s-onset studies can provide reliable individual UaMT6s-onset phase estimates and that the protocol described in this study is a practical and noninvasive methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.