Abstract

Biomass-derived N-doped carbon (BNC) is an important environmental material and widely used in the fields of water purification and soil remediation. However, the toxicant in the commonly used synthesis process of BNC materials have been largely ignored. Herein, we firstly report the presence of a highly toxic by-product (KCN) in the activation process of BNC materials consequential of the carbothermal reduction reaction. Because this carbothermal reduction reaction also regulates the N-doping and pore development of BNC materials, the KCN content directly relates with the properties of BNC material properties. Accordingly, a high KCN content (∽ 611 mg) can occur in the production process of per g BNC material with high specific surface area (∽ 3600 m2/g). Because the application performance of BNC material is determined by the surface area and available N doping, therefore, production of a BNC material with high performance entails high risk. Undoubtedly, this study proves a completely new risk recognition on a familiar synthesis process of biomass-based material. And, strict protective device should be taken in fabrication process of biomass-derived carbon material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.