Abstract
Although sensory feedback from the urethra plays an integral role in the regulation of lower urinary tract function, little is known about the properties of flow-responsive primary afferent neurons. The purpose of this study was to characterize the activity of sacral afferents that responded to fluid flow through the urethra. Single neuron action potentials were recorded extracellularly from the S1 and S2 dorsal root ganglia in eight cats anesthetized with α-chloralose. 21 of 116cells responded to urethral flow but not to mechanical palpation of the perineum, 22 responded to both urethral flow and palpation, and 27 responded to palpation only. 34 of the 43 flow-responsive cells exhibited a firing response to 10ml flow boluses that could be fit using a power function: FR(t)=a×(t)b+c, where FR is firing rate, t is time, and a, b and c are constants. In all 34cells the ‘b’ term was negative, indicating that the firing rate slowed over the time course of the urethral flow. In 16 of the 24cells that were recorded during at least four different flow rates, a power function provided a good fit of the relationship between firing rate and flow rate: FR(flow)=k×(flow)p+q, where k, p and q are constants. In each of these 16cells the ‘p’ term was positive, indicating that the firing rate tended to increase with increases in flow rate. These are the first data to characterize the properties of flow-responsive afferents in the cat, and reveal properties that parallel those of other afferents.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.