Abstract

AimsTo establish an animal model of diabetes mellitus (DM) with moderately elevated blood glucose levels, and to examine the nitric oxide (NO) mechanism controlling urethral function in streptozotocin (STZ)-induced DM rats. Main methodsFemale Sprague-Dawley rats were used. DM was induced by intraperitoneal injection of STZ (65 mg/kg) and some of them received subcutaneous implantation of a low-dose insulin pellet. Voiding behavior was evaluated in metabolic cages. Isovolumetric cystometry and urethral perfusion pressure (UPP) were then evaluated under urethane anesthesia, during which L-arginine (100 mg/kg) and N-nitro-L-arginine methyl ester hydrochloride (L-NAME) (50 mg/kg) were administered intravenously. In vitro urethral activity was also tested by organ bath muscle strip studies. Key findingsUPP changes and high-frequency oscillation (HFO) were significantly (P < 0.05) smaller in 8-weeks DM rats vs. normal control (NC) rats or insulin-treated DM rats, which showed reductions in urine overproduction and voided volume per micturition vs. untreated DM rats. UPP nadir was decreased by L-arginine in NC and insulin-treated DM groups, and decreased by L-NAME in all groups. Five of 6 untreated DM rats showed a detrusor-sphincter dyssynergia pattern after L-NAME. In in vitro studies, the relative ratio of L-NAME-induced reductions of urethral relaxation against pre-drug urethral relaxation was significantly smaller in DM vs. NC rats (P < 0.05). SignificanceLow-dose insulin-treated DM rats would be a useful model for studying natural progression of DM-induced lower urinary tract dysfunction. The impaired NO-mediated urethral relaxation mechanisms play an important role in DM-induced urethral dysfunction, which could contribute to DM-induced inefficient voiding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.