Abstract

Ureolytic bacteria can be a promising mediator used for the immobilization of potentially toxic elements via microbially-induced carbonate precipitation (MICP) process from biodegradable ions to carbonate form. Electronic waste (E-waste) environment is very complex compared to general metal contaminated soil, however, MICP has not been studied under such an environment. In this study, three bacterial strains were successfully isolated from an E-waste area in Guiyu, China, and indicated to have positive ureolytic behavior with significant heavy metal resistance (specific to Cu and Pb), among which, a strain of Lysinibacillus sp. was proven to show a great persistence in heavy metal immobilization. This featured strain can tolerate up to 100 ppm copper and 1000 ppm lead according to minimal inhibitory concentration (MIC) results, and its urease activity was well-adapted to metal effects. Results also revealed the positive correlation (R2 = 0.9819) between metal concentrations and surface layer protein content present in bacterial cells. The underlying mechanism on the role of S-layer protein in heavy metal immobilization during biocalcification was elucidated. The metabolic system of heavy metal resistance for these E-waste derived isolates is novel and represents a point of interest for possible environmental applications to immobilize toxic heavy metals from electronic waste sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.