Abstract

In healthy human subjects, less than 0.2% of l-arginine is converted to l-citrulline and nitric oxide (NO) by NO synthases (NOS), a metabolic pathway present in all cell types. Assessment of NOS activity in vitro and in vivo by measuring l-citrulline or NO is difficult. l-citrulline is formed from l-arginine to a much higher extent by other pathways including the urea cycle. Furthermore, NO is a very short-lived gaseous molecule and is oxidized to nitrite and nitrate which are ubiquitous. In fact, nitrite and nitrate are also derived from food and air and are major laboratory contaminants. Further, NOS (in the uncoupled state) are also able to produce superoxide in addition and/or instead of l-citrulline and NO. The difficulties of NOS assays based on l-citrulline and NO measurement can only in part be overcome by sophisticated techniques including use of radio-labeled ((3)H or (14)C) and stable-isotope labeled ((15)N2 at the guanidine group) l-arginine analogs as substrates for NOS and measurement of radio-labeled l-citrulline and (15)N-labeled nitrite and nitrate, respectively. In the present work, we report on the development, validation and application of an UPLC-MS/MS method for the assessment of the activity of recombinant NOS enzymes by using [guanidino-(15)N2]-l-arginine (20 μM for recombinant NOS, 5mM in cell systems) as the substrate and by measuring [ureido-(15)N]-l-citrulline as the reaction product (usually formed at concentrations below 1 μM) using (2)H7-l-citrulline as the internal standard. The lower limit of detection of the method is about 80 fmol (2)H7-l-citrulline. In cell systems, exceeding [guanidino-(15)N2]-l-arginine is removed by strong cation exchanger solid-phase extraction. The method was cross-validated by a GC-MS assay that measures simultaneously (15)N-nitrite and (15)N-nitrate as pentafluorobenzyl derivatives, with unlabeled nitrite and nitrate serving as the internal standards. By means of this UPLC-MS/MS (15)N-citrulline assay, N(G)-nitro-arginine (100 μM) was found to inhibit recombinant inducible NOS (iNOS) activity (by 38%), whereas nitrite and GSSG (each at 500 μM) did not affect iNOS activity at all. Nitrite and GSSG at pathophysiological concentrations are unlikely to uncouple NOS. NOS activity was not detectable in platelets of healthy humans by the UPLC-MS/MS and GC-MS assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.