Abstract

Six novel complexes, [Ni(C36H34N2O10)]·2.25CH3OH·0.5C4H10O (1), [Co(C36H34N2O10)] (2), [Cu(C36H34N2O10)]·2CH3OH (3), [Ni(C36H32N2O8Cl2)]·2CH3OH (4), [Co(C36H32N2O8Cl2)]·4CH3OH (5) and [Cu(C36H32N2O8Cl2)]·2CH3OH (6) with two sexidentate N2O4-donor bis-Schiff base ligands (C36H34N2O10 = 1,2-bis(2-methoxy-6-formylphenoxy)ethane-l-tyrosine; C36H32N2O8Cl2 = 1,2-bis(2-methoxy-6-formylphenoxy)ethane-l-4-chlorophenylalanine) have been synthesized and structurally characterized. Theoretical calculation of the six complexes was carried out by density functional theory (DFT) Becke's three-parameter hybrid (B3LYP) method employing the 6-3lG basis set, indicating that the calculation results are in accordance with experimental results. Moreover, the inhibitory activities of complexes 1–6 were tested in vitro against jack bean urease. At the same time, molecular docking was investigated to determine the probable binding mode. The experimental values and docking simulation exhibited that complexes 3 and 6 showed strong inhibitory activity (IC50 = 10.36 ± 1.13, 15.63 ± 3.04 μM) compared with the positive reference acetohydroxamic acid (IC50 = 26.99 ± 1.43 μM). Their structure-inhibitory activity relationship was further discussed from the perspective of molecular docking and theoretical calculation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.