Abstract

Inefficient oxygenation and build-up of waste products are inevitable in a conventional cell culture. The development of a perifusion method for isolated hepatocytes improves the process of oxygenation and helps in end-product removal. For the perifusion of cells, they must be immobilized to prepare a bioreactor model. The present work was directed to testing a hepatocyte bioreactor and maintaining tissue metabolizing activity for periods ranging from 24 to 72 h of continuous and intermittent perifusion and to test the ability of this system for cyclosporin A (CsA), biotransformation and urea synthesis as contrasted to hepatocyte in the culture. Hepatocytes were isolated, immobilized and perifused with William’s E culture medium containing 1 mM NH 4Cl and CsA (20 μM). Hepatocytes in the culture were treated in the same way. CsA disappearance from the perifusion or culture media was determined by a HPLC method. Higher urea synthesis rate was achieved by cells in the continuously perifused bioreactor for 24 h compared to culture (0.5±0.05 mg h −1 vs 0.33±0.03 mg h −1, respectively). ALT leakage was lower in the bioreactor model (60 U l −1) as compared to hepatocyte culture (125 U l −1). The ability of hepatocytes in the bioreactor to metabolize CsA was very fast compared to hepatocytes in the culture during 24 h (95% vs 50%, respectively). The present data reveal the higher efficiency of hepatocytes in a bioreactor model as compared to hepatocyte culture. Further research is required in relation to better understanding and standardization of the culture conditions for immobilized and perifused hepatocytes. In addition, the cellular model described here inherits economic and ethical potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.