Abstract

Two flat-plate microchannel hemodialyzers were constructed consisting of two identical laminae separated by a 20[μm] thick ultrafiltration membrane (Gambro AN69). Each lamina contains a parallel array of microchannels 100[μm] deep, 200[μm] wide, and 5.6[cm] or 9.9[cm] in length respectively. Urea was removed from the aqueous stream containing 1.0[g] urea per liter de-ionized water in the blood side, by countercurrent contact with pure de-ionized water in the dialysate side of the flat-plate hemodialyzer. In all cases volumetric flow rate of water in the dialysate side was equal or less than the volumetric flow rate in the blood side, which is in large contrast to commercial applications of hollow-fiber hemodialyzers where dialysate flow is severalfold larger than blood flow rate. A three-dimensional finite volume mass transport model, built entirely from the first principles with no adjustable parameters, was written in FORTRAN. The results of the mathematical model excellently predict experimental results. The fractional removals of urea predicted by the model are within 2.7%-11% of experimentally obtained values for different blood and dialysate velocities/flow rates in microchannels, and for different transmembrane pressures. The overall mass transfer coefficient was calculated using the urea outlet concentrations obtained at various average velocities (1.0-5.0[cm/s]) in the blood and dialysate, and two nominal transmembrane pressures (∆P(tm) = 0 and 10,000.[Pa]). Overall mass transfer coefficients obtained experimentally ranged from 0.068 to 0.14 [cm/min]. The numerical model predicted an average overall mass transfer coefficient of 0.08 [cm/min]. This value is 60% higher than those found in commercial dialyzers (~0.05[cm/min]).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call