Abstract

We demonstrate a facile synthesis method to modify the candle soot morphology with the assistance of urea as a porogen during combustion to enable its use as a binder-free anode. As obtained urea modified candle soot varies significantly in its physical and electrochemical properties compared to candle soot deposited directly by burning the candle. While we characterize the physiochemical properties thoroughly in this work using X-ray diffraction, Raman spectroscopy, N2 adsorption/desorption isotherms, scanning as well as high resolution transmission electron microscopy, electrochemical properties of as-fabricated modified candle soot anode shows an outstanding specific capacity of 520 and 260 mAhg−1 at 5C and 10 C-rates after 900 and 2000 galvanostatic charge-discharge cycles respectively. Due to the presence of extra mesoporosity in the modified candle soot along with nitrogen doping from urea, electrochemical performance is significantly improved as compared to bare candle soot. Further, full cell studies show that as modified nitrogen-doped candle soot can deliver a high capacity of 143 mAhg−1 at 50 mAg−1 current density with 312 Wh-kg−1 specific energy density. Excellent electrochemical behavior of as-modified nitrogen doped candle soot reveals the potency of this material as an anode for Li-ion battery for high current applications such as hybrid electric vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.