Abstract

Typical approaches to heterocycle construction require significant changes in synthetic strategy even for a change as minor as increasing the ring size. The ability to access multiple heterocyclic scaffolds through a common synthetic approach, simply through trivial modification of one reaction component, would enable facile access to diverse libraries of structural analogues of core scaffolds. Here, we show that urea-derived ligands effectively promote Pd-mediated chainwalking processes to enable remote heteroannulation for the rapid construction of six- and seven-membered azaheterocycles under essentially identical reaction conditions. This method demonstrates good functional group tolerance and effectively engages sterically hindered substrates. In addition, this reaction is applicable to target-oriented synthesis, demonstrated through the formal synthesis of antimalarial alkaloid galipinine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.