Abstract

Streptomyces subtilisin inhibitor (SSI) is known to exist in at least two distinct denatured states, cold-denatured (D') and heat-denatured (D) under acidic conditions. In the present work, we investigated the manner how increasing urea concentration from 0 to 8 M changes the polypeptide chain conformation of SSI that exists initially in the D' and D states as well as in the native state (N), in terms of the secondary structure, the tertiary structure, and the chain form, based on the results of the experiments using circular dichroism (CD), small-angle X-ray scattering (SAXS) and 1H-NMR spectroscopy. Our results indicate that the urea-induced conformational transitions of SSI under typical conditions of D' (pH 1.8, 3 degrees C) occur at least in two steps. In the urea concentration range of 0-2 M (step 1), a cooperative destruction of the tertiary structure occurs, resulting in a mildly denatured state (DU), which may still contain a little amount of secondary structures. In the concentration range of 2-4 M urea (step 2), the DU state gradually loses its residual secondary structure, and increases the radius of gyration nearly to a maximum value. At 4 M urea, the polypeptide chain is highly disordered with highly mobile side chains. Increasing the urea concentration up to 8 M probably results in the more highly denatured or alternatively the stiffer chain conformations. The conformational transition starting from the N state proceeds essentially the same way as in the above scheme in which D' is replaced with N. The conformational transition starting from the D state lacks step 1 because the D state contains no tertiary structures and is similar to the DU state. The fact that similar conformations are reached at urea concentrations above 2 M from different conformations of D', D, and N indicates that the effect of urea dominates in determining the polypeptide conformation of SSI in the denatured states rather than the pH and temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.