Abstract

The benefit of fertilizer application during establishment of a tree plantation depends on effective nutrient uptake and the utilization of the nutrients in growth. Five urea treatments (0, 50, 75, 150, and 450 kg N/ha) were applied in a completely randomized plot design to a field planted with American sycamore (Platanus occidentalis L.) seedlings to evaluate growth responses and nitrogen use efficiency during the first season of plantation establishment. The site was in the Oak Ridge Reservation in eastern Tennessee on a highly weathered soil. Harvests were conducted on 3 occasions during a 22 week experimental period, and dry weights of stems, leaves, and large and small roots were measured. Chemical analyses were conducted on plant tissues from the 0, 75, and 450 kg N/ha treatments. Plant dry weight increased with urea application and growth analysis showed that this was mainly associated with increase in leaf area and to a minor extent with increase in net assimilation rate. Root weight increased significantly with urea application. The specific absorption rate of roots for several nutrients was greater at higher urea levels for the first 2 harvest periods, but this pattern reversed during the 3rd growth period. Surprisingly, manganese uptake and the specific absorption rate for manganese were enhanced with higher urea application. The acidifying effect of urea nitrification is a likely explanation for the increased Mn availability, and nitrate leaching and/or nitrogen immobilization contributed to low uptake of urea-N by the seedlings. The proportion of the applied nitrogen incorporated into the seedlings was 1.5 and 0.6% for the 75 and 450 kg N/ha urea treatments, respectively. Broadcast fertilizer application is not an effective way of supplying nutrients to seedlings during plantation establishment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.