Abstract

The kinetics of urea, creatinine and phosphate removal during dialysis were investigated in pediatric patients using a two-pool model taking into account fluid shifts and mass transfer between the two compartments. It is found that even urea must be described by a two-pool model since it presents a post dialysis rebound due to equilibration between the two compartments. Phosphate plasma concentration drops very sharply during the first hour of dialysis and rises rapidly during the rebound period. This pattern cannot be accounted for by the classical two-pool model with constant generation rate and mass transfer coefficients, but corresponds to a large time-dependent phosphate influx from the intracellular compartment in which phosphate is generated by biochemical reactions or liberated from the bones. This influx was calculated for four patients representing 8 dialysis sessions and was found to reach a plateau after 90 minutes of dialysis, dropping rapidly during the rebound period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.