Abstract

SummaryNutrition influences the microenvironment in the proximity of oocyte and affects early embryonic development. Elevated blood urea nitrogen, even in healthy dairy cows, is associated with reduced fertility and there is high correlation between blood urea levels and follicular fluid urea levels. Using a docking calculation (in silico), urea showed a favorable binding activity towards the ZP-N domain of ZP3, that of ZP2, and towards the predicted full-length sperm receptor ZP3. Supplementation of oocyte maturation medium with nutrition-related levels of urea (20 or 40 mg/dl as seen in healthy dairy cows fed on low or high dietary protein, respectively) dose-dependently increased: (i) the proportion of oocytes that remained uncleaved; and (ii) oocyte degeneration; and reduced cleavage, blastocyst and hatching rates. High levels of urea induced shrinkage in oocytes, visualised using scanning electron microscopy. Urea downregulated NANOG while dose-dependently upregulating OCT4, DNMT1, and BCL2 expression. Urea at 20 mg/dl induced BAX expression. Using mathematical modelling, the rate of oocyte degeneration was sensitive to urea levels; while cleavage, blastocyst and hatching rates exhibited negative sensitivity. The present data imply a novel role for urea in reducing oocyte competence and changing gene expression in the resultant embryos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.