Abstract
To improve the electrochemical performance of CFx for lithium primary batteries, a ball milling treatment of CFx and urea with various mass ratios is carried out in this paper. It is shows that the weight ratio of urea/CFx significantly affects the electrochemical performance of the ball-milled CFx. Electrochemical tests show that the modified CFx material exhibits excellent electrochemical performance with much enhanced rate capacity, improved discharge platform, and lowered initial potential delay compared with the untreated CFx. In detail, when the weight ratio of urea/CFx is 5, the material delivers a discharge capacity of 550.6 mAh g−1 with a high power density of 10309 W kg−1 (at 5000 mA g−1 and 25 °C) and exhibits an excellent electrochemical stability at low temperature of 5 °C (power density up to 5922.5 W kg−1 at 3000 mA g−1). The outstanding electrochemical performance is mainly due to the synergistic effect of enlarged interlayer distance, decreased particle size, and increased surface area, which resulting in improved the electrochemical reaction activity, decreased reaction resistance, and facilitated lithium ions diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.