Abstract

Microalgae is a potential source of bioproducts, including feedstock to biofuels. Urea has been pointed as potential N source for microalgae growth. Considering that urea metabolism releases HCO3- to the medium, we tested the hypothesis that this carbon source could improve photosynthesis and consequently growth rates of Chlamydomonas reinhardtii. In this sense, the metabolic responses of C. reinhardtii grown with ammonium and urea as nitrogen sources under mixotrophic and autotrophic conditions were investigated. Overall, the mixotrophy led to increased cell growth as well as to a higher accumulation of lipids independent of N source, followed by a decrease in photosynthesis over the growth phases. In mixotrophy, urea stimulates growth in terms of cell number and dry weight. Furthermore, higher photosynthesis was verified in late logarithmic phase compared to ammonium. Under autotrophy conditions, although cell number and biomass were reduced, there was higher production of starch independent of N source. Nonetheless, urea-based autotrophic treatments stimulated biomass production compared to ammonium-based treatment. Under mixotrophy higher input of carbon into the cell from acetate and urea optimized photosynthesis and consequently promoted cell growth. Together, these results suggest urea as alternative source of carbon, improving photosynthesis and cell growth in C. reinhardtii.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.