Abstract
In our previous studies of varying osmotic diuresis, UT-A1 urea transporter increased when urine and inner medullary (IM) interstitial urea concentration decreased. The purposes of this study were to examine 1) whether IM interstitial tonicity changes with different urine urea concentrations during osmotic dieresis and 2) whether the same result occurs even if the total urinary solute is decreased. Rats were fed a 4% high-salt diet (HSD) or a 5% high-urea diet (HUD) for 2 wk and compared with the control rats fed a regular diet containing 1% NaCl. The urine urea concentration decreased in HSD but increased in HUD. In the IM, UT-A1 and UT-A3 urea transporters, CLC-K1 chloride channel, and tonicity-enhanced binding protein (TonEBP) transcription factor were all increased in HSD and decreased in HUD. Next, rats were fed an 8% low-protein diet (LPD) or a 0.4% low-salt diet (LSD) to decrease the total urinary solute. Urine urea concentration significantly decreased in LPD but significantly increased in LSD. Rats fed the LPD had increased UT-A1 and UT-A3 in the IM base but decreased in the IM tip, resulting in impaired urine concentrating ability. The LSD rats had decreased UT-A1 and UT-A3 in both portions of the IM. CLC-K1 and TonEBP were unchanged by LPD or LSD. We conclude that changes in CLC-K1, UT-A1, UT-A3, and TonEBP play important roles in the renal response to osmotic diuresis in an attempt to minimize changes in plasma osmolality and maintain water homeostasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.