Abstract
We successfully design and construct urchin-like non-precious-metal bifunctional oxygen electrocatalysts via a two-step pyrolysis process, where nitrogen, sulfur co-doped carbon nanotube frameworks are grafted onto mesoporous cobalt sulfide/nitrogen, sulfur co-doped carbon spheres. The urchin-like structure grants large electrochemically active area, good electron and mass transfer capability, as well as excellent structural stability. Nitrogen, sulfur co-doped carbon can synergistically enhance the catalytic activity of cobalt sulfide sites, and also contribute to the exposure of heteroatom-induced active sites, such as, pyridinic N, graphitic N, and C-S-C. Hence, benefiting from the unique architecture and efficient catalytic sites, the resulting catalysts demonstrate excellent bifunctional catalytic activities with a positive half-wave potential of 0.860 V vs. RHE for oxygen reduction reaction and low overpotential of ∼390 mV at the current density of 10 mA cm−2 for oxygen evolution reaction in alkaline medium, which can rank them among one of the most promising cobalt-based bifunctional oxygen electrocatalysts reported previously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.