Abstract

Water pollution has become a serious global issue owing to the large amounts of contaminants generated from industrial and agricultural development. Recently, various boron nitride-based micro/nano-materials have exhibited efficient sorption capacity for contaminants from water. Herein, novel urchin-like boron nitride hierarchical structure assembled by free-growing boron nitride nanotubes and crapy boron nitride nanosheets is firstly fabricated via a sample two-step approach, including the synthesis of analogous "core-shell" structured boron-containing precursor and thermal catalytic chemical vapor deposition. A combined growth mechanism of vapor-liquid-solid and vapor-solid is proposed to control the formation of BN hierarchical structure. The unique structure exhibits superior removal capacity of 115.07 mg g−1 and 92.85 mg g−1 for Pb2+ and Cu2+ in water solution, respectively. The excellent adsorption performance of the product mainly derives from the vast lattice imperfections, the high-density edge active sites, the expanded interplanar spacing, as well as the unique structural characteristics. They are beneficial for structural stability and enough space for accommodating the adsorbed heavy metal ions. These results indicate that the urchin-like boron nitride hierarchical structure is a promising adsorption material for water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call