Abstract

Developing cost-efficient electrocatalysts for ambient N2-to-NH3 conversion and revealing the reaction mechanism are appealing yet challenging tasks. Some transition metal oxides have been recently used to catalyze the nitrogen reduction reaction (NRR), but their further applications are greatly impeded because of their questionable conductivity, poor dispersion, limited active sites, and so forth. Herein, three-dimensional Ni foam-supported urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies (Al-Co3O4/NF) were prepared via a hydrothermal process and subsequent annealing treatment. It is shown that introducing Al atoms into Co3O4 effectively tunes the electronic properties of the catalyst, and the increased surface oxygen vacancies induced by Al doping facilitate the activation of nitrogen. What is more, this urchin-like nanostructure, demonstrating an ability to limit the coalescence of gas bubbles, enables the rapid removal of small gas bubbles and better exposure of active sites to N2, thus yielding an impressive ammonia electrosynthesis activity (NH3 yield rate: 6.48 × 10-11 mol s-1 cm-2; Faradaic efficiency: 6.25%) in 0.1 M KOH. Electrochemical-based in situ Fourier transform infrared spectroscopy was employed to study the mechanism of NRR, indicating an associative alternating pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.