Abstract

Expanding urbanization is a major factor behind rapidly declining biodiversity. It has been proposed that in urbanized societies, the rarity of contact with diverse environmental microbiota negatively impacts immune function and ultimately increases the risk for allergies and other immune-mediated disorders. Surprisingly, the basic assumption that urbanization reduces exposure to environmental microbiota and its transfer indoors has rarely been examined. We investigated if the land use type around Finnish homes affects the diversity, richness, and abundance of bacterial communities indoors. Debris deposited on standardized doormats was collected in 30 rural and 26 urban households in and near the city of Lahti, Finland, in August 2015. Debris was weighed, bacterial community composition determined by high throughput sequencing of bacterial 16S ribosomal RNA (rRNA) gene on the Illumina MiSeq platform, and the percentage of four different land use types (i.e., built area, forest, transitional, and open area) within 200 m and 2000 m radiuses from each household was characterized. The quantity of doormat debris was inversely correlated with coverage of built area. The diversity of total bacterial, Proteobacterial, Actinobacterial, Bacteroidetes, and Firmicutes communities decreased as the percentage of built area increased. Their richness followed the same pattern except for Firmicutes for which no association was observed. The relative abundance of Proteobacteria and particularly Gammaproteobacteria increased, whereas that of Actinobacteria decreased with increasing built area. Neither Phylum Firmicutes nor Bacteroidetes varied with coverage of built area. Additionally, the relative abundance of potentially pathogenic bacterial families and genera increased as the percentage of built area increased. Interestingly, having domestic animals (including pets) only altered the association between the richness of Gammaproteobacteria and diversity of Firmicutes with the built area coverage suggesting that animal ownership minimally affects transfer of environmental microbiota indoors from the living environment. These results support the hypothesis that people living in densely built areas are less exposed to diverse environmental microbiota than people living in more sparsely built areas.

Highlights

  • The United Nations estimates that over half of the world’s population are urban inhabitants, and by 2050, the number is expected to rise to more than two-thirds (United Nations, 2014)

  • The principal coordinate analysis revealed that the bacterial community composition did not differ between the rural and urban samples at the operational taxonomic units (OTUs) level, genus level, or the phylum level (Figures 2A–C)

  • We investigated how land cover classes are associated with the quantity as well as the qualitative variables of the debris deposited on the experimental doormats

Read more

Summary

Introduction

The United Nations estimates that over half of the world’s population are urban inhabitants, and by 2050, the number is expected to rise to more than two-thirds (United Nations, 2014). Forests and natural grasslands are either lacking or rare in urban areas, which limits urban dwellers’ access to nonbuilt, natural areas This can be a consequence of major changes in land use (Butchart et al, 2010). Due to these changes and other anthropogenic disturbances, natural biodiversity in urban areas is often low (Chapin et al, 2000; Hanski et al, 2012; Thapa et al, 2017). This in turn can lead to a reduced exposure to environmental microbiota among urban inhabitants (von Hertzen and Haahtela, 2006). This effect is significant in the light of the widely recognized “hygiene hypothesis” and the “biodiversity hypothesis” which state that reduced exposure to natural microbial communities increases the risk of immunemediated non-communicable diseases (Strachan, 1989; Haahtela et al, 2015)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call