Abstract

Spatial and temporal fractionation of trace metals and major elements in suspended particulate matter in the Seine River was investigated to study the impact of the increasing urbanization in the Greater Paris Region. Suspended sediments in the Seine River were collected between December 2008 to August 2009 upstream and downstream of Paris. They were subjected to total digestion and sequential extraction procedure certified by the Bureau Communautaire de Reference and trace metals along with major elements were analyzed with inductively coupled plasma mass spectroscopy. Metal enrichment factors increased up to eight folds after the Seine River downstream of the Greater Paris Region showing a significant contribution of urbanization. Enrichment of copper, lead and zinc downstream of Paris are followed by the increase of their reducible fraction of at least 10% implicating an increase in metals associated with iron oxides. The exchangeable fraction, which includes the carbonate-associated metals, is only significant for cadmium, nickel and zinc (more than 2 %) while the oxidisable fraction accounts for less than 20 % for the anthropogenic metals downstream except for copper. The metals can be divided to (a) “reducible” group including cadmium, lead, and zinc, associated with more than 60 % of the total Bureau Communautaire de Reference extractable metals to the reducible fraction containing mostly iron oxide phases for the downstream sites. (b) A “distributed” group including chromium, copper, and nickel that are associated to at least 3 different phase-groups: (1) oxides, (2) organic matter and sulphides and (3) mineral phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call