Abstract

Coastal cities, as hubs of social and economic activity, have witnessed rapid urbanization and population growth. This study explores the transformative changes in urban municipal wastewater treatment practices and their profound implications for greenhouse gas (GHG) emissions in Chinese coastal provinces. The approach employed in this study integrates comprehensive data analysis with statistical modeling to elucidate the complex interplay between urbanization, wastewater treatment practices, and GHG emissions. Results reveal a substantial surge in GHG emissions from coastal wastewater treatment, rising from 3367.1 Gg CO2e/yr in 1990–23644.8 Gg CO2e/yr in 2019. Spatially, the top 20 cities contribute 56.0% of emissions, with hotspots in the Bohai Sea Region, Yangtze River Delta, and Pearl River Delta. Initially dominated by emissions from untreated wastewater, post-2004, GHG emissions from treatment processes became the primary source, tied to electricity use. Growing population and urbanization rates escalated wastewater discharge, intensifying GHG emissions. From 1990 to 2019, average GHG intensity ranged between 320.5 and 676.6 g CO2e/m3 wastewater, with an annual increase of 12.3 g CO2e/m3. GHG intensity variations relate to the wastewater treatment rate, impacting CH4, N2O, and CO2 emissions, underscoring the need for targeted strategies to mitigate environmental impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.