Abstract

Urbanisation is changing the climate of the world we live in. In Great Britain (GB) 5.8% of the total land area is covered by artificial surfaces, increasing from 4.3% in 1975. Aside from associated loss of farmland, biodiversity and a range of ecosystem services, changing to urban form warms the Earth’s surface: the urban heat island (UHI) effect. Standard estimates of temperature changes do not account for urbanisation (i.e. use of rural-only stations or removal of urban bias in observations), meaning that anthropogenic modifications to the land surface may be causing the surface-level atmosphere to warm quicker than those estimates suggest. Using observations from a high-density urban monitoring network, we show that locally this warming (instantaneously) may be over 8 °C. Based on the relationships between UHI intensity, urban fraction and wind speed in this network, we create a statistical model and use it to estimate the current daily-mean urban warming across GB to be 0.04 °C [0.02 °C –0.06 °C]. Despite this climate contribution appearing small (94% of GB’s land cover for the time-being is still rural), we show that half of GB’s population currently live in areas with average daily-mean warming ∼0.4 °C. Under heatwave conditions our high estimates show 40% of GB’s population may experience over a 1 °C daily-mean UHI. Furthermore, simply due to urbanisation (1975–2014) we estimate GB is warming at a rate equivalent and in addition to 3.4% [1.9%–5.0%] of the observed surface-level warming calculated from background stations. In the fastest urbanising region, South East GB, we find that these warming rates are up to three times faster. The methodology is straightforward and can be readily extended to other countries or updated as future land cover data becomes available.

Highlights

  • In Great Britain (GB) 5.8% of the total land area is covered by artificial surfaces, increasing from 4.3% in 1975

  • We explore spatial and temporal scales typically not investigated with urbanisation and urban heat island (UHI) studies, which are generally focussed on a single city, or on the urban impact on long-term temperature records

  • This is achieved by generalising UHI intensity observations from a high-density observation network across GB using a log-linear relationship with wind speed and weighting by urban fraction

Read more

Summary

15 October 2020

Keywords: Climate, heatwave, land-use change, urban heat island, urbanisation Supplementary material for this article is available online Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Introduction
Land cover and meteorological data
Urbanisation rates in Great Britain
UHI relationship with urban fraction and wind speed
Scaling the UHI contribution to GB climate
Discussion and conclusions
Findings
Data availability statement

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.